

DOT (dot1.f)
...
CALL DOT200(...,WK,...)
...

DOT200 (dot3.f)
...
SCALS = WK(N+39)
...
CALL
DOT201(...,SCALS,...)
or
DOT217(...)
or
DOT300(...)
or
DOT310(...,SCALS,...)
...
WK(N+39) = SCALS
...

DOT201 (dot3.f)
SCALS->SCALS
...
Conditional SCALS = 0.0
...
BETA = SCALS*DFDF/DF2
...
CALL DOT403(...,SCALS,...)
...

DOT310 (dot6.f)
SCALS -> PHI1
...
CALL DOT371(...)
...
CALL DOT372(...,PHI1,...)
...
FU = PHI1
...

DOT403 (dot5.f)
SCALS -> SCAL
...
SCAL = ...
...

DOT372 (dot6.f)
PHI1->PHI
...
PHI = ...
...

DOT371 (dot6.f)
...
CALL DOT201(...,SCALS,...)
...

DOT301 (dot5.f)
...
CALL DOT201(...,SCALS,...)
...

DOT300 (dot5.f)
...
CALL DOT301(...)
...

DOT217 (dot4.f)
...
CALL DOT218(...,SCALS,...)
...

DOT218 (dot4.f)
SCALS->SCALS
...
BETA = SCALS*DFDF/DF2
...
CALL DOT403(...,SCALS,...)
...

y

y

n

n

y

ni

n

nini

n

The red box (DOT218) is where the different behavior between
RHEL5 and RHEL6 is occurring. In particular, SCALS is
uninitialized in RHEL5 but is somehow grabbing previous state
in RHEL6. Based on my exploration of the code, the former is
consistent with how the code is written. Whether or not that is
what was intended is another question, I guess.

This diagram is intended to track the use of SCALS through
the various DOT subroutines, including name changes via
argument lists. A “y” label on an arrow means a value is
passed, “n” means no value is passed, and “ni” means an
uninitialized value is passed. Based on DOT200, it appears
that even though the state of SCALS is preserved in the WK
array, that preserved state is not
used in all cases, including the
path that leads to the problematic
DOT218.

	Slide 1

